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DNS and latency

Figure: Loading fr.wikipedia.org using webpagetest.org from
Strasbourg (5Mbps/1Mbps connection with 28 ms RTT, chrome). DNS
took 312 ms, that is 24% of “Time to First Interactive”. 2/26



Why does DNS suffer from latency?

Figure: DNS resolution seen from the stub resolver.
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Why does DNS suffer from latency?

Figure: Iterative DNS resolution process.
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Why does DNS suffer from latency?

Figure: DNS response served from cache.
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When things go wrong

But what if no response comes back?
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When things go wrong

Stub resolver
First
retrans.
timeout

Retransmission
strategy

Time before
application
failure

Glibc 2.24 (Linux) 5 seconds Constant interval 40 seconds
Bionic (android 7.1) 5 seconds Constant interval 30 seconds
Windows 10 1 second Exponential backoff 12 seconds
OS X 10.13.6 1 second Exponential backoff 30 seconds
IOS 11.4 1 second Exponential backoff 30 seconds

Table: Retransmission behaviour of widely used stub resolvers.
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What could have gone wrong?

No way to distinguish
the four cases!
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Persistent DNS connections to the rescue

Persistent connections
I Replace UDP with TCP, TLS, QUIC. . .
I Reuse connection for several queries
I Gain: decouples application from transport

The network security community hates UDP anyway!
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Decoupling application from transport

Figure: DNS over TCP: retransmission can happen much faster thanks to
RTT estimation.
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Contributions

Contributions
I We show that DNS-over-TCP can yield lower latency than

UDP (testbed experiment)
I We study the performance impact of TCP/TLS on recursive

resolvers (large-scale experient on Grid’5000) and find it is
manageable
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First experiment: focus on latency

Figure: Experimental platform to compare UDP and TCP.
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First experiment: focus on latency

Client parameters
I Inter-query time distribution (between 50 ms and 300 ms)
I Number of queries sent simultaneously (1, 3)
I Retransmission timeout for UDP (3s)
I TCP variants: Early Retransmit, Tail Loss Probe, Low

Latency, Thin Linear Timeout. . .

Network parameters
I Emulated loss (0.5%, 1%, 2%, 5%, 10%)
I Emulated delay (RTT of 20 ms, 60 ms, 200 ms)
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First experiment: latency results
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Figure: 2% packet loss, 200 ms RTT 14/26



First experiment: head-of-line blocking
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First experiment: main results

Main results
I TCP reduces worst case latency: p99 reduced from 3200 ms

to 1006 ms, p99.9 reduced from 6200 ms to 1157 ms
I head-of-line blocking issue, especially when the RTT is much

larger than the inter-query time
I TCP variants have no significant impact!

Further work: DNS-over-QUIC to avoid head-of-line blocking
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From theory to real-world deployment

Figure: Deployment model of persistent DNS connections.
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Second experiment: large-scale

Experiment goals and challenges
I Analyze the performance impact of persistent connections on

recursive resolvers;
I Compare UDP, TCP, TLS;
I Large-scale: millions of DNS clients;
I No simulation: real recursive resolver software.

Grid’5000 fits all the needs!

18/26



Second experiment: large-scale

Figure: Practical setup using Grid’5000. Each VM opens several
persistent connections to the recursive resolver.

19/26



Methodology: peak performance estimation
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Figure: unbound with 1 thread, 24 VMs, 250 TLS connections per VM. 20/26



Methodology: peak performance estimation
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Figure: Bind with 1 thread, 24 VMs, 125 TCP connections per VM. 21/26



Main results
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Figure: Performance comparison of UDP, TCP, TLS (unbound). 22/26
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Main results

●

●

●

●

●

0

200

400

600

800

0 5 10 15 20

Number of threads

P
ea

k 
se

rv
er

 p
er

fo
rm

an
ce

 (
K

qp
s)

Figure: Scaling on multiple CPU cores. 24/26



Conclusion

Conclusion
I Persistent DNS connections can reduce latency on lossy

networks
I Recursive resolver performance is manageable, even with TLS

(but see below)
I Grid’5000 is useful for large-scale, scripted experiments

Sharp edges
I client-side: Head-of-line blocking with TCP and TLS
I server-side: cost of new TLS sessions (churn)

Thank you!
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Latency

Figure: Latency of each query during an experiment (Bind/TCP) 26/26


