
Persistent DNS connections for improved
performance

Submitted to IFIP Networking 2019

Baptiste Jonglez, Sinan Birbalta, Martin Heusse

18 January 2019

Université Grenoble Alpes, Laboratoire d’Informatique de Grenoble
PhD advisors: Martin Heusse, Bruno Gaujal

1/26



DNS and latency

Figure: Loading fr.wikipedia.org using webpagetest.org from
Strasbourg (5Mbps/1Mbps connection with 28 ms RTT, chrome). DNS
took 312 ms, that is 24% of “Time to First Interactive”. 2/26



Why does DNS suffer from latency?

Figure: DNS resolution seen from the stub resolver.

3/26



Why does DNS suffer from latency?

Figure: Iterative DNS resolution process.

4/26



Why does DNS suffer from latency?

Figure: DNS response served from cache.

5/26



When things go wrong

But what if no response comes back?
6/26



When things go wrong

Stub resolver
First
retrans.
timeout

Retransmission
strategy

Time before
application
failure

Glibc 2.24 (Linux) 5 seconds Constant interval 40 seconds
Bionic (android 7.1) 5 seconds Constant interval 30 seconds
Windows 10 1 second Exponential backoff 12 seconds
OS X 10.13.6 1 second Exponential backoff 30 seconds
IOS 11.4 1 second Exponential backoff 30 seconds

Table: Retransmission behaviour of widely used stub resolvers.

7/26



What could have gone wrong?

No way to distinguish
the four cases!

8/26



Persistent DNS connections to the rescue

Persistent connections
I Replace UDP with TCP, TLS, QUIC. . .
I Reuse connection for several queries
I Gain: decouples application from transport

The network security community hates UDP anyway!

9/26



Decoupling application from transport

Figure: DNS over TCP: retransmission can happen much faster thanks to
RTT estimation.

10/26



Contributions

Contributions
I We show that DNS-over-TCP can yield lower latency than

UDP (testbed experiment)
I We study the performance impact of TCP/TLS on recursive

resolvers (large-scale experient on Grid’5000) and find it is
manageable

11/26



First experiment: focus on latency

Figure: Experimental platform to compare UDP and TCP.

12/26



First experiment: focus on latency

Client parameters
I Inter-query time distribution (between 50 ms and 300 ms)
I Number of queries sent simultaneously (1, 3)
I Retransmission timeout for UDP (3s)
I TCP variants: Early Retransmit, Tail Loss Probe, Low

Latency, Thin Linear Timeout. . .

Network parameters
I Emulated loss (0.5%, 1%, 2%, 5%, 10%)
I Emulated delay (RTT of 20 ms, 60 ms, 200 ms)

13/26



First experiment: latency results
100%

10%

1%

0.1%

0 1000 2000 3000

Query latency (ms)

C
C

D
F

 (
lo

g 
sc

al
e)

Transport

UDP

TCP

Figure: 2% packet loss, 200 ms RTT 14/26



First experiment: head-of-line blocking
100%

10%

1%

0.1%

0.01%

0 200 400 600 800

Query latency (ms)

C
C

D
F

 (
lo

g 
sc

al
e)

Transport

UDP

TCP

Queries
per burst

1

3

Figure: 2% packet loss, 20 ms RTT 15/26



First experiment: main results

Main results
I TCP reduces worst case latency: p99 reduced from 3200 ms

to 1006 ms, p99.9 reduced from 6200 ms to 1157 ms
I head-of-line blocking issue, especially when the RTT is much

larger than the inter-query time
I TCP variants have no significant impact!

Further work: DNS-over-QUIC to avoid head-of-line blocking

16/26



From theory to real-world deployment

Figure: Deployment model of persistent DNS connections.

17/26



Second experiment: large-scale

Experiment goals and challenges
I Analyze the performance impact of persistent connections on

recursive resolvers;
I Compare UDP, TCP, TLS;
I Large-scale: millions of DNS clients;
I No simulation: real recursive resolver software.

Grid’5000 fits all the needs!

18/26



Second experiment: large-scale

Figure: Practical setup using Grid’5000. Each VM opens several
persistent connections to the recursive resolver.

19/26



Methodology: peak performance estimation

42590

0

20

40

60

80

0 10 20 30

Time (seconds)

Q
ue

ry
 r

at
e 

an
d 

an
sw

er
 r

at
e 

in
 k

Q
P

S

Plot

Answer rate

Query rate

Figure: unbound with 1 thread, 24 VMs, 250 TLS connections per VM. 20/26



Methodology: peak performance estimation

47510

0

20

40

60

80

0 10 20 30

Time (seconds)

Q
ue

ry
 r

at
e 

an
d 

an
sw

er
 r

at
e 

in
 k

Q
P

S

Plot

Answer rate

Query rate

Figure: Bind with 1 thread, 24 VMs, 125 TCP connections per VM. 21/26



Main results

●
●

●
●

●
● ●

●
●

●
● ● ● ● ●

0

100

200

300

0 5000 10000 15000 20000 25000

Number of client connections

P
ea

k 
se

rv
er

 p
er

fo
rm

an
ce

 (
K

qp
s)

Mode

●

UDP

TCP

TLS

Figure: Performance comparison of UDP, TCP, TLS (unbound). 22/26



Main results

●
● ●

●

●

● ● ●
● ● ● ● ● ●

0

50

100

150

200

0 5000 10000 15000 20000 25000

Number of client connections

P
ea

k 
se

rv
er

 p
er

fo
rm

an
ce

 (
K

qp
s)

Resolver

●

unbound/TCP

bind9/TCP

Figure: Performance comparison of bind and unbound (TCP). 23/26



Main results

●

●

●

●

●

0

200

400

600

800

0 5 10 15 20

Number of threads

P
ea

k 
se

rv
er

 p
er

fo
rm

an
ce

 (
K

qp
s)

Figure: Scaling on multiple CPU cores. 24/26



Conclusion

Conclusion
I Persistent DNS connections can reduce latency on lossy

networks
I Recursive resolver performance is manageable, even with TLS

(but see below)
I Grid’5000 is useful for large-scale, scripted experiments

Sharp edges
I client-side: Head-of-line blocking with TCP and TLS
I server-side: cost of new TLS sessions (churn)

Thank you!
25/26



Latency

Figure: Latency of each query during an experiment (Bind/TCP) 26/26


